Cuspidal ℓ-modular representations of p-adic classical groups
نویسندگان
چکیده
منابع مشابه
EXISTENCE OF CUSPIDAL REPRESENTATIONS OF p-ADIC REDUCTIVE GROUPS
We prove that any reductive group G over a non-Archimedean local field has a cuspidal complex representation.
متن کاملREPRESENTATIONS OF CLASSICAL p-ADIC GROUPS
Preface 1 1. Classical groups 4 2. Parabolic induction 10 3. Admissible representations 16 4. Jacquet modules and cuspidal representations 24 5. Composition series of induced representations of SL(2, F ) and GL(2, F ) 34 6. Some examples 39 7. Parabolically induced representations of SL(2, F ) and GL(2, F ) 45 8. Some general consequences 52 9. GL(n, F ) 55 10. GSp(n, F ) 62 11. On the reducibi...
متن کاملMINI-COURSE: p-MODULAR REPRESENTATIONS OF p-ADIC GROUPS
1.1. The case ` 6= p. In this case, we are in the setting of the classical Local Langlands Correspondence, which can be stated (roughly) as follows: Let n ≥ 1. We then have an injective map (1) continuous representations of Gal(Qp/Qp) on n-dimensional Q`-vector spaces, up to isomorphism ↪−→ irreducible, admissible representations of GLn(Qp) on Q`-vector spaces, up to isomor...
متن کاملON SQUARE-INTEGRABLE REPRESENTATIONS OF CLASSICAL p-ADIC GROUPS II
In this paper, we continue our study of non-supercuspidal discrete series for the classical groups Sp(2n, F ), SO(2n+ 1, F ), where F is p-adic.
متن کاملOn Square-Integrable Representations of Classical p-adic Groups
In this paper, we use Jacquet module methods to study the problem of classifying discrete series for the classical p-adic groups Sp(2n, F) and SO(2n + 1, F).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)
سال: 2020
ISSN: 1435-5345,0075-4102
DOI: 10.1515/crelle-2019-0009