Cuspidal ℓ-modular representations of p-adic classical groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXISTENCE OF CUSPIDAL REPRESENTATIONS OF p-ADIC REDUCTIVE GROUPS

We prove that any reductive group G over a non-Archimedean local field has a cuspidal complex representation.

متن کامل

REPRESENTATIONS OF CLASSICAL p-ADIC GROUPS

Preface 1 1. Classical groups 4 2. Parabolic induction 10 3. Admissible representations 16 4. Jacquet modules and cuspidal representations 24 5. Composition series of induced representations of SL(2, F ) and GL(2, F ) 34 6. Some examples 39 7. Parabolically induced representations of SL(2, F ) and GL(2, F ) 45 8. Some general consequences 52 9. GL(n, F ) 55 10. GSp(n, F ) 62 11. On the reducibi...

متن کامل

MINI-COURSE: p-MODULAR REPRESENTATIONS OF p-ADIC GROUPS

1.1. The case ` 6= p. In this case, we are in the setting of the classical Local Langlands Correspondence, which can be stated (roughly) as follows: Let n ≥ 1. We then have an injective map (1)  continuous representations of Gal(Qp/Qp) on n-dimensional Q`-vector spaces, up to isomorphism  ↪−→  irreducible, admissible representations of GLn(Qp) on Q`-vector spaces, up to isomor...

متن کامل

ON SQUARE-INTEGRABLE REPRESENTATIONS OF CLASSICAL p-ADIC GROUPS II

In this paper, we continue our study of non-supercuspidal discrete series for the classical groups Sp(2n, F ), SO(2n+ 1, F ), where F is p-adic.

متن کامل

On Square-Integrable Representations of Classical p-adic Groups

In this paper, we use Jacquet module methods to study the problem of classifying discrete series for the classical p-adic groups Sp(2n, F) and SO(2n + 1, F).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal für die reine und angewandte Mathematik (Crelles Journal)

سال: 2020

ISSN: 1435-5345,0075-4102

DOI: 10.1515/crelle-2019-0009